2 resultados para HISOPADO ANO RECTAL

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osmoregulatory mechanisms in holocephalan fishes are poorly understood except that these fish are known to conduct urea-based osmoregulation as in elasmobranchs. We, therefore, examined changes in plasma parameters of elephant fish Callorhinchus milii, after gradual transfer to concentrated (120%) or diluted (80%) seawater (SW). In control fish, plasma Na and urea concentrations were about 300 mmol l–1 and 450 mmol l–1, respectively. These values were equivalent to those of sharks and rays, but the plasma urea concentration of elephant fish was considerably higher than that reported for chimaeras, another holocephalan. After transfer to 120% SW, plasma osmolality, urea and ion concentrations were increased, whereas transfer to 80% SW resulted in a fall in these parameters. The rises in ion concentrations were notable after transfer to 120% SW, whereas urea concentration decreased predominantly following transfer to 80% SW. In elephant fish, we could not find a discrete rectal gland. Instead, approximately 10 tubular structures were located in the wall of post-valvular intestine. Each tubular structure was composed of a putative salt-secreting component consisting of a single-layered columnar epithelium, which was stained with an anti-Na+,K+-ATPase serum. Furthermore, Na+,K+-ATPase activity in the tubular structures was significantly increased after acute transfer of fish to concentrated SW (115%). These results suggest that the tubular structures are a rectal gland equivalent, functioning as a salt-secreting organ. Since the rectal gland of elephant fish is well developed compared to that of Southern chimaera, the salt-secreting ability may be higher in elephant fish than chimaeras, which may account for the lower plasma NaCl concentration in elephant fish compared to other chimaeras. Since elephant fish have also attracted attention from a viewpoint of genome science, the availability of fish for physiological studies will make this species an excellent model in holocephalan fish group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Fruits and vegetables (F/V) have been examined extensively in nutrition research in relation to colorectal cancer (CRC). However, their protective effect is subject to debate, possibly because of different effects on different subsites of the large bowel.

Objective To determine whether any association between F/V consumption and risk of CRC differed by subsite of the bowel (proximal colon, distal colon, and rectum).

Design The Western Australian Bowel Health Study is a population-based, case-control study conducted between June 2005 and August 2007. Complete food frequency questionnaire data were analysed from 834 CRC cases and 939 controls. Logistic regression analysis was used to estimate the effects of quartiles of F/V intake on risk of CRC at different subsites. Odds ratios (OR) and 95% confidence intervals (CI) were calculated for CRC overall and for the three separate subsites.

Results Risk of proximal colon cancer and rectal cancer was not associated with intakes of total F/V, total vegetable, or total fruit. Brassica vegetable intake was inversely related with proximal colon cancer (Q4 vs Q1 OR 0.62; 95% CI 0.41 to 0.93). For distal colon cancer, significant negative trends were seen for total F/V, and total vegetable intake. Distal colon cancer risk was significantly decreased for intake of dark yellow vegetables (Q4 vs Q1 OR 0.61; 95% CI 0.41 to 0.92) and apples (Q4 vs Q1 OR 0.51; 95% CI 0.34 to 0.77). An increased risk for CRC was found to be associated with intake of fruit juice (Q4 vs Q1 OR 1.74; 95% CI 1.24 to 2.45).

Conclusions Our results suggest that different F/V may confer different risks for cancer of the proximal colon, distal colon, or rectum. Future studies might consider taking into account the location of the tumor when examining the relation between F/V consumption and risk of CRC.